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Abstract 

Incremental speech synthesis aims at delivering the 
synthetic voice while the sentence is still being typed. One of 
the main challenges is the online estimation of the target 
prosody from a partial knowledge of the sentence’s syntactic 
structure. In the context of HMM-based speech synthesis, this 
typically results in missing segmental and suprasegmental 
features, which describe the linguistic context of each phoneme. 
This study describes a voice training procedure which integrates 
explicitly a potential uncertainty on some contextual features. 
The proposed technique is compared to a baseline approach 
(previously published), which consists in substituting a missing 
contextual feature by a default value calculated on the training 
set. Both techniques were implemented in a HMM-based Text-
To-Speech system for French, and compared using objective 
and perceptual measurements. Experimental results show that 
the proposed strategy outperforms the baseline technique for 
this language. 

Index Terms: HMM-based speech synthesis, incremental, 
TTS, HTS, prosody 

1. Introduction 
Incremental Text-To-Speech (iTTS) systems aim at starting 
delivery of the synthetic voice before the full sentence context 
becomes available, e.g. while a user is still typing the text to 
vocalize. Contrary to a conventional TTS, the synthesis follows 
the text input, words after words (potentially with a delay of one 
word). This ‘synthesis-while-typing’ approach is illustrated in 
Figure 1. By reducing the latency between text input and speech 
output, iTTS should enhance the interactivity of 
communication. In particular, it should improve the user 
experience of people with communication disorders who use a 
TTS system in their daily life, as a substitute voice. Besides, 
iTTS could be chained with incremental speech recognition 
systems, in order to design highly responsive speech-to-speech 
conversion systems (for application in automatic translation, 
silent speech interface, real-time enhancement of pathological 
voice, etc.). 

To our best knowledge, the concept of incremental speech 
synthesis was initially formulated in [1] in the context of 
dialogue systems. However, in the proposed proof-of-concept, 
the speech generation was delivered incrementally but was 
generated in a non-incremental way. In [2], Baumann & 
Schlangen proposed the first complete software architecture 
dedicated to incremental speech processing (including 
recognition, dialogue management and TTS modules). Another 
proof-of-concept based on the reactive HMM-based parameter 
generation system MAGE [3] was described in [4]. 

 

 
Figure 1: Conventional versus incremental TTS 

One of the main remaining challenges of iTTS systems is 
the online estimation of the target prosody from an incomplete 
sentence (and therefore an uncertain - incrementally unveiled - 
syntactic structure). In conventional TTS, target prosody is 
typically calculated from long-range contextual features [5], 
[6], extracted from the text by morphological and syntactic 
analyzers. Considering a current segment as reference (typically 
a phoneme), some of these features refer to its left context (i.e. 
the ‘past’); some of them refer to its right context (i.e. the 
‘future’). These features can, for instance, be the part-of-speech 
tag (POS) of the next word, or the number of remaining words 
before the end of the current sentence. Indeed, such features 
related to the right context are usually not available in 
incremental processing. Therefore, strategies should be 
developed to deal with these ‘missing’ features and predict 
acceptable prosody from an ‘incomplete’ sentence. This is the 
general scope of the present study. 

In [7], [8], Baumann first evaluated the impact of potentially 
missing features on the quality of the estimated prosody, in the 
context of HMM-based speech synthesis, for English and 
German languages. Then, the author proposed a strategy for 
predicting a ‘default’ value for these missing features (this 
strategy is therefore referred to as the ‘Default’ strategy here). 
This strategy exploits the decision trees that are classically used 
in HMM-based speech synthesis in the state clustering 
procedure. The goal of this present study is twofold. First, we 
evaluate this strategy [7] (briefly recalled in Section 2) for 
French language, which has different prosodic characteristics 
than English and German (for instance, French can be 
considered to have no lexical stress[9]). Second, we propose 
another approach for dealing with missing contextual features, 
also in the context of HMM-based speech synthesis (Section 3).  
Contrary to [7], our approach does not aim at recovering the 
missing features at synthesis time. It rather consists in 
integrating a potential uncertainty on some features when 
building the synthetic voice (i.e. when training the HMM set). 
This strategy is here referred to as the ‘Joker’ strategy. The two 
strategies were implemented in an HMM-based TTS for French 
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language, and compared using objective measurements and a 
perceptual listening test (Section 4). 

 

 
Figure 2. Procedure for recovering full context labels from 

incomplete labels and clustering tree exploration when building 
unseen labels with the default strategy. 

2. Baseline strategy: ‘Default’ 
In most implementations of HMM-based TTS (such as [10] or 
[11]), each speech unit is a phone in context. The context is 
described by a set of segmental features such as the identity of 
the current and adjacent phonemes, and suprasegmental 
features, such as the POS of the current and adjacent words, the 
position of the word in the current breath group, etc. Since it is 
very difficult to build a training dataset covering all possible 
contexts, clustering techniques are used to group some HMM 
states and share their model parameters (similarly to ASR 
systems). The most widely used technique is tree-based 
clustering [12]. Each node of the tree is associated with a 
context-related question, such as ‘R-SYLL-NB-PHON==3’ 
(“Are there 3 phonemes in the next syllable?”). The pertinence 
of the context-related questions and the structure of the tree are 
learnt automatically from the training dataset with respect to a 
specific criterion, such as the Minimum Description Length 
[13]. At synthesis time, the decision tree is extensively used 
when building the so-called ‘unseen models’ (i.e. corresponding 
to contexts with no acoustic observations in the training set). 

In [7], Baumann proposed to exploit these decision trees to 
recover the missing contextual features at synthesis time. The 
procedure, which is illustrated in Figure 2, can be summarized 
as follows. First, a set of full-context HMMs (i.e. HMMs 
modeling each phoneme with information about its left and 
right contexts) is trained using a standard procedure (including 
tree-based clustering). Then, a ‘default answer’ is assigned to 
each contextual feature related to the right context (which might 
be unknown in incremental processing). This ‘default answer’ 
is calculated from the training set, by averaging the answers 
observed at each node of the decision tree associated with a 

question on the right context. For numerical features (e.g. the 
number of words before the end of the sentence), the default 
answer is the mean value calculated across the training dataset; 
for symbolic features (e.g. the POS tag of the next word), the 
default answer is the most common value observed in the 
training dataset. 
This strategy gives encouraging results and works with pre-
existing voices that were not trained with the incremental use-
case in mind, but presents a major disadvantage. By imposing a 
default value to some contextual features, some branches of the 
clustering trees become totally unexplored when building the 
‘unseen models’ (as shown by the red dashed zone in Figure 2). 
Therefore, only a limited number of HMM states are used at 
synthesis time. In other words, the fine-grained modeling of the 
training dataset based on a rich set of contextual features is not 
exploited here. In the next section, we present another strategy 
to deal with missing contextual features in the context of HMM-
based incremental synthesis. 

3. Proposed strategy: ‘Joker’ 
In the proposed approach, the potential uncertainty on right-
contextual features is handled during voice training rather than 
during the synthesis process, as in the ‘Default’ strategy. The 
proposed technique aims at considering a contextual feature that 
could potentially be missing as ‘relevant’ information that can 
be explicitly used when describing the linguistic context. 
Besides, when clustering the pool of HMM-states, we evaluate 
the need of tying model parameters among all contexts 
potentially sharing the same missing features. This training 
procedure results in a set of context-dependent HMMs that are 
likely to be slightly less accurate than full-context models (for 
instance, they are expected to deliver a neutral intonation for 
situations where the right context would trigger very different 
patterns). However, the ‘Joker’ strategy may lead to better 
perceptual results since there is no risk it uses an incorrect full-
context model, as in the ‘Default’ strategy.  

The ‘Joker’ has been implemented in the HTS framework 
as follows. First, the training corpus is labeled by introducing a 
so-called ‘Joker’ value (specified by the # character) to each 
contextual feature which cannot be determined when processing 
the text incrementally. This notably affects all the contextual 
features requiring information about the next word. As an 
example, let us consider the label associated with the phoneme 
in the last syllable of the current word, and the right-contextual 
feature ‘number of phonemes in the next syllable (usually 
denoted by the symbol ‘C’ in HTS). Since the value of this 
feature is unknown when processing the text incrementally, the 
‘Joker’ tag is inserted in the label such as: “…-p+…/C:#...” 
(other contextual features are omitted for clarity). Then, a set of 
context-dependent HMMs is trained using a standard procedure 
(similarly to a non-incremental system). The Joker tag (#) is 
simply considered as a possible value for some contextual 
features. 

A tree-based clustering procedure is then applied to deal 
with data sparsity. However, contrary to a non-incremental 
system, we introduce questions about the possible 
known/unknown characteristic of each contextual feature. In 
the HTS format, this can be written as: “QS 
“R_nb_phone_in_next_syllabe_is_unknown” {*/C:#}” where 
C stands for the number of phonemes in the next syllable. At 
the end of the clustering procedure, the parameters of some 
models/states sharing a common missing feature are expected 
to be tied together. The rest of the training procedure, as well as 
the synthesis procedure are similar to a non-incremental system. 
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As shown in Figure 3, one of the main advantages of the ‘Joker’ 
strategy compared to the ‘Default’ strategy, is a better 
utilization of the decision tree when building the unseen 
models. Even if a question related to a missing contextual 
feature in used at a specific node of the tree, the label can 
continue to ‘go down’ to all sub-branches of this node. 
Therefore, in this case, all HMM states are reachable. This 
should result in more variety in the estimated trajectories, 
compared to the ‘Default’ strategy, as shown by the 
experimental results described in the next sections. 

 
Figure 3. Usage of the decision tree for building 

unseen models using the ‘Joker’ strategy. 

4. Experimental protocol and results 

4.1. HMM-based TTS system for French language 
The two strategies described in the previous sections were 
evaluated in the context of an HMM-based TTS system, 
developed in our group for French language. The specificities 
of this system are the following. The audio material used for 
training was extracted from an audiobook of the novel “Le tour 
du Monde en 80 jours” by Jules Verne (this corpus was also 
used in [14]). This corpus contains 3h17mn of speech data, after 
silence being removed. Phonetization as well as morphological 
and syntactic analyses of the text transcriptions were achieved 
using the linguistic front-end COMPOST [15]. The contextual 
features considered in this study are listed below (the features 
which are potentially missing when only the past and current 
words are known are written in bold):  

� Identity of the n-2, n-1, n (current), n+1, n+2 phoneme 
� Position of current phoneme in the current syllable 

(forward & backward) 
� Number of phonemes in the previous/current/next 

syllable. 
� Identity of the vowel of the current syllable 
� Position of the current syllable in the word (forward & 

backward) 
� Position of the current syllable in the sentence (forward 

& backward) 
� POS-tag of previous/current/next word (always missing) 
� Number of syllables in the previous/current/next word 

(always missing) 
� Position of the current word in the sentence (forward & 

backward) 
� Sentence type (assertion, wh-question, full question, 

etc.) 

An initial segmentation of the audio recordings at phonetic 
level was obtained using a forced-alignment procedure and was 
then post-processed manually. In our system, the full-band 
spectral envelope is parameterized using a “Harmonic plus 
Noise Model” (HNM) [16] (and not mel-cepstral coefficients as 
in [17]), following the implementation detailed in  [18] (p.82). 
Each acoustic observation (extracted each 5 ms) is a 93-
dimensional vector composed of the fundamental frequency f0, 
a (12th-order) LSF-modeling of the harmonic component of the 
spectral envelope (defined for voiced frames only), and a (16th-
order) LSF-modeling of the residual spectrum, completed by 
first and second derivatives. A set of context-dependent HMMs 
(5 emitting states for the acoustic models) were trained on this 
corpus using the HTS toolkit [10] and a standard procedure. 
Global variance optimization was not used in this study.  

Similarly to [7], we calculated the percentage of use of each 
right-contextual questions for clustering the training set, for 
spectrum-related streams, pitch and duration. As shown in 
Figure 4, we observed approximately the same pattern for 
French and German (see Figure 2 in [7]). As in [7], most of the 
questions recruited for clustering the spectrum-related 
parameters were related to the quinphone context. However, for 
pitch and duration, more questions related to current and next 
word were used for French than for German.    

 
Figure 4. Percentage of use of right-contextual 

questions used in the decision tree for clustering the 
training set, for spectrum (Harmonic+Noise), pitch 

and duration 

4.2. Objective evaluation 
The two strategies considered in this study were first evaluated 
using as set of objective measurements. A subset of 165 test 
sentences was randomly selected from the corpus (and removed 
from the training set). These sentences were first synthesized 
using a non-incremental approach. The resulting acoustic 
feature vectors (i.e. spectrum, f0 and duration) were considered 
as the ‘best possible result’. In other words, we assume that 
incremental processing will systematically lead to lower 
performance than non-incremental processing (a similar 
assumption was made in [7]). The 165 test sentences were then 
synthesized using both ‘Default’, and ‘Joker’ strategies. The 
accuracy of the estimated spectrum was evaluated by 
calculating a mel-cepstral distortion [19] in dB  defined such as: 

���(���, ��	
) = �
�

�

��(�
) ∑ �2 ∑ (��� − ��	
)���


�������   (1)  

where ��� and ��	
 are respectively vectors of D+1 mel-ceptral 
coefficients estimated using the S incremental strategy and the 
baseline non-incremental (NI) approach and T the number of 
frames in the utterance. These coefficients were derived from 
the HNM-model of the spectrum (section 4.1) using the SPTK 
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toolkit [20]. A perceptual-based measure [21] of the difference 
(in cents) (also used in [22]) between incremental and non-
incremental approaches in terms of f0 was calculated for each 
utterance such as: 

��� = �
� ∑ 1200 log���
�(�) �
	
(�)⁄ �����   (2) 

The timing distortion induced by non-incremental 
processing was evaluated by calculating for each test sentence 
the log duration ratio [23] such as: 

���� = �
� ∑ log (d�!"/d#")�$��   (3) 

where d�!$ and d#$ are the estimated phoneme duration 
obtained using non-incremental and incremental approaches, 
respectively, and P is the number of phonemes in the utterance. 
For each metric (MCD, Ef0, Edur), the statistical significance of 
the difference between ‘Default’ and ‘Joker’ strategies was 
assessed using a paired t-test. Experimental results are 
presented in Table 1.  

Table 1: Objective differences between ‘Default’ 
and ‘Joker’ for spectrum, f0 and phone duration, 

averaged across the test set (± standard deviation). 

 Default  Joker  Joker vs. 
Default 

MCD (dB) 0.78 ± 0.26 0.94 ± 0.15 *** 
Ef0 (cents) 197.4 ± 88.7 178.2 ± 78.4 NS 
Edur  0.20 ± 0.06 0.17 ± 0.04 *** 

In terms of spectrum estimation, the distortions observed 
with both incremental strategies are relatively small (less than 1 
dB). This result is compatible with the study of [24] showing 
that a look ahead of two phonemes (i.e quinphone modeling 
with no long-range contextual features) is enough to accurately 
estimate the target spectrum. The highest distortion was 
obtained with the ‘Joker’ strategy (which can therefore be 
considered as slightly less accurate than the default strategy). 
However, the difference between the two strategies, even 
statistically significant, is tiny (0.16 dB). An opposite effect was 
observed for pitch and segment duration (which are more 
closely related to prosody). Also, and despite statistical 
significance, the differences between the two strategies remain 
too small to conclude to a perceptual difference (i.e. with less 
than 20 cents for f0). Therefore, a listening test was conducted 
to study in more detail potential perceptual differences between 
the two strategies. 

4.3. Perceptual evaluation 

The perceptual evaluation was conducted with a ranking 
listening test, similar to [25] and [26]. For each trial, the subject 
was asked to sort 3 sound samples, according to its 
“naturalness”. These sound samples correspond to the same 
sentence synthesized respectively with the non-incremental 
approach, the ‘Default’ approach, and the proposed ‘Joker’ 
approach. Two stimuli used in this test are submitted as 
supplementary material (exampleX_S.wav with X={1,2}, 
S={joker, default, nonIncremental}). For each test sentence, the 
user interface used for this test was  composed of a ranking X/Y 
area, in which each listener was asked to ‘drag and drop’ the 3 
audio samples to rank. Each sample was represented by a ‘push 
button’ allowing to listen to it, as many times as required. The 
X-axis of the ranking area was a continuous scale (ranging from 
0 to 5). A set of 5 labels (“very bad, bad, middle, good, very 

good”) was nevertheless added to help the subject in the ranking 
process (the scale can thus be considered as semi-continuous). 
The position on the Y-axis was not taken into account (as told 
to the subject). The test was conducted in a quiet room with the 
same headphones, with 18 native speakers of French, with no 
particular expertise in speech synthesis. They were asked to 
evaluate a set of 12 sentences (resulting in 36 stimuli in total). 
These sentences were randomly extracted from the test set (the 
shortest selected sentence was 14 syllables long, the longest was 
27 syllables long). For each trial and each participant, the 
presentation order of the stimuli was randomized. Both 
parametric (ANOVA) and non-parametric (Kruskal-Wallis) 
tests were conducted to assess the statistical significance of the 
results. These tests considered the X-position on the ranking 
area as the continuous variable to explain, the 3-level 
explicative variable Strategy (with the possible values ‘non-
incremental’, ‘default’, ‘joker’), and a random Listener effect 
on the intercept. Since the main effect of the factor Strategy was 
significant (p<0.005), post-hoc analyses were conducted to test 
the contrast between ‘Default’ and ‘Joker’ strategies. Results 
are presented in Figure 5.  

 

 
Figure 5. Results of the perceptual listening test: 

mean position on the X-axis of ranked-sample, 
averaged across the listeners, for both non-

incremental and incremental (‘Default’ and ‘Joker’) 
strategies. 

As expected, the best-ranked samples were those obtained 
with the non-incremental approach (i.e. with a complete set of 
contextual features). The proposed ‘Joker’ strategy outperforms 
significantly the baseline (‘default’) strategy (2.8 vs. 1.5, 
p<0.005). This supports the benefit of considering explicitly the 
uncertainties about right context when building the synthetic 
voice. Interestingly, no statistically significant difference was 
observed between the non-incremental and the ‘Joker’ strategy. 
Amongst other possible causes, this could be explained by a 
‘ceiling effect’, due to the intrinsic quality of the baseline 
HMM-based synthesis (with a mean score of 3).  

5. Conclusion and perspectives 
This study describes a strategy for dealing with missing 
contextual features, for incremental HMM-based speech 
synthesis. This strategy consists in integrating a potential 
uncertainty on some contextual features when training the 
HMM set. This approach was compared to the baseline 
technique proposed in [7]. Both strategies were implemented in 
an HMM-based TTS system for French. A perceptual test 
shows that the proposed strategy outperforms the baseline 
technique for that language. Future work will focus on the 
evaluation of the proposed strategy for other languages, such as 
English and German (which were considered in [7]). In order to 
build a complete incremental TTS system, we will also combine 
the proposed technique with and ‘incremental text parsing’ 
front-end. Such module could be inspired by some approaches 
developed for incremental text processing and syntactic parsing 
[27]. 
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