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Abstract

We describe the 2012 release of INPROTK', our
“Incremental Processing Toolkit” which combines a
powerful and extensible architecture for incremental
processing with components for incremental speech
recognition and, new to this release, incremental
speech synthesis. These components work domain-
independently; we also provide example implemen-
tations of higher-level components such as natural
language understanding and dialogue management
that are somewhat more tied to a particular domain.
The toolkit is accompanied by evaluation tools for
analysing timing behaviour, and we highlight some
timing results on conversational speech input in this
paper. We offer our toolkit to foster research in this
new and exciting area, which promises to help increase
the naturalness of behaviours that can be modelled in
such systems.

1 Introduction

Recent work has shown that incremental (or online)
processing of user input or generation of system output
enables spoken dialogue systems to produce behaviour
that is perceived as more natural than and preferable
to that produced by systems that are bound by a turn-
based processing mode [1-4]. There is still much left
to find out about the best ways of modelling these be-
haviours in such systems, however. To foster research
in this area, we are releasing a new version of our “In-
cremental Processing Toolkit” (INPROTK), which pro-
vides lower-level components (such as speech recog-
nition and speech synthesis, but also a general modu-
lar processing architecture) and allows researchers to
concentrate on higher-level modules (such as natural
language understanding and dialogue modelling; for
which we provide example implementations). We de-
scribe these components in the following, pointing out
the differences and extensions to earlier releases [5].
Two competing incremental dialogue processing tool-
kits have been presented and compared to INPROTK
previously [6].

IThe toolkit is available as open-source at http://
inprotk.sf.net; further information on the project is avail-
able at http://www.inpro.tk.

2 Incremental Processing Architecture

INPROTK realises the /U-model of incremental pro-
cessing [7, 8], where incremental systems are con-
ceptualised as consisting of a network of processing
modules. Each module has a left buffer, a processor,
and a right buffer, where the normal mode of pro-
cessing is to take input from the left buffer, process
it, and provide output in the right buffer, from where
it goes to the next module’s left buffer. (Top-down,
expectation-based processing would work in the op-
posite direction.) As is shown in Figure 1, modules
exchange incremental units (IUs), which are the small-
est ‘chunks’ of information that can trigger connected
modules into action. IUs typically are part of larger
units; e.g., individual words as parts of an utterance,
or frame elements as part of the representation of an
utterance meaning. This relation of being part of the
same larger unit is recorded through same level links;
the units that were used in creating a given IU are
linked via grounded in links. Thus, information is
represented in the form of interconnected IUs which
form a network representing the system’s state.

Modules need to react to three basic situations:
that IUs are added to a buffer, which triggers process-
ing; that IUs that were erroneously hypothesised by
an earlier module are revoked, which may trigger a
revision of a module’s own output; and that modules
signal that they commit to an IU, that is, won’t revoke
it anymore (or, respectively, expect it to not be revoked
anymore). INPROTK offers flexibility on how tightly
or loosely modules are coupled in a system. It provides
mechanisms for sending IU updates between processes
via a light-weight remote procedure call protocol,” as
well as for using shared memory within one process
which allows each module to access the whole IU net-
work via the links. INPROTK follows an event-based
model, where modules create events that describe the
edit they performed to the IU network, for which other
modules can register as listeners. Additionally, mod-
ules can register listeners to specific IUs, e. g. to be
notified when an output IU’s delivery status changes.
Individual modules and their interconnection to form
a network are configured via a configuration file.

As opposed to our previous release [5], INPROTK

2In an earlier release, we have used the open agent architecture
[9], but in the current branch this is not further developed.
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Figure 1: In the IU model, modules consist of a left
buffer, a right buffer, and the processor proper. They
are connected by super-imposing two buffers; IUs are
linked by grounded-in (grin and same-level links (s/I).

module communication is now completely encapsu-
lated in the TUModule class. An implementing pro-
cessor is called into action by a leftBufferUpdate
method which gives access both to the edits to IUs
in the left buffer since the last call, and to the list of
IUs directly. The implementing processor must then
notify its right buffer, either about the edits to the right
buffer, or giving the content directly. Modules can be
fully event-driven, only triggered into action by be-
ing notified of a hypothesis change, or they can run
persistently, in order to create endogenous events like
time-outs. Event-driven modules can run concurrently
in separate threads or can be called sequentially by
another module (which may seem to run counter the
spirit of incremental processing, but can be advan-
tageous for very quick computations for which the
overhead of creating threads should be avoided). In
the case of separate threads, which run at different up-
date intervals, the left-buffer view will automatically
be updated to its most recent state.

IUs are typed objects, where the base class 1U
specifies the links (same-level, grounded-in) that al-
low to create the IU network, handles update listeners,
and the assignment of unique IDs. The payload and
additional properties of an IU are specified for the
IU’s type. A design principle here is to make all rele-
vant information available, while avoiding replication.
For instance, an IU holding a bit of semantic repre-
sentation can query which interval of input data it is
based on, where this information is retrieved from
the appropriate IUs by automatically following the
grounded-in links. The lowest-level IUs are grounded
in BaseData, which contains user-side input such as
speech from the microphone, derived ASR feature
vectors, camera feeds from a webcam, derived gaze in-
formation, etc., in several streams that can be accessed
based on their timing information.

INPROTK comes with an extensive set of moni-
toring and profiling modules which can be linked into
the module network at any point and allow to stream
data to disk or to visualise it with TEDview [10]. IN-
PROTK also supports several ways of simulating input
(e. g. typed or read from a file) for debugging. All IU
modules can also output log messages to the viewing
tool directly (to ease graphic debugging of error cases
in multi-threaded applications).

3 Incremental Speech Recognition

Our speech recognition module is based on the Sphinx-
4 [11] toolkit and comes with acoustic models for Ger-
man.? The module queries the ASR’s current best
hypothesis after each frame of audio and changes its
output accordingly, adding or revoking wordIus and
notifying its listeners. Additionally, for each of the
WordIUs, SyllableIUs and SegmentIUs are cre-
ated and bound to the word (and to the syllable respec-
tively) via the grounded-in hierarchy. Later modules
in the pipeline are thus able to use this lower-level
information (e.g. to disambiguate meaning based on
prosodic aspects of words). For prosodic processing,
we inject additional processors into Sphinx’ acoustic
frontend and provide pitch, loudness, and spectral tilt
as BaseData features for further prosodic processing.

An ASR’s current best hypothesis frequently
changes during the recognition process with the ma-
jority of the changes not improving the result because
wrong words are hypothesized intermittently [12, 13].
Every such change triggers all listening modules (and
possibly their listeners), resulting in a lot of unneces-
sary processing. Furthermore, changes may actually
deteriorate results, if a ‘good’ hypothesis is intermit-
tently changed for worse. Therefore, we developed
hypothesis smoothing approaches [12] which greatly
reduce spurious edits in the output at the cost of some
timeliness.

3.1 Evaluating Incremental Speech Recognition

While not part of the distribution proper, we think that
it can only be useful for the field to agree on common
evaluation metrics. Incremental processing brings new
considerations of dynamics into the assessment of pro-
cessing quality, and hence requires additional metrics
compared to non-incremental processing. For exam-
ple, raw WER is an unsuitable metric to evaluate in-
cremental processing as it doesn’t capture the dynamic
evolution of incremental hypotheses over time.

We have refined and extended our previously out-
lined methodology and software for evaluating incre-
mental speech recognition [12, 14]. An interactive tool
now plots histograms showing when words have been
first recognized FO (respectively finally decided on
FD) relative to their position in the audio stream.

With the tool, smoothing parameters can be ex-
plored interactively to help finding the optimum for
a given corpus. To test incremental performance on
broad, conversational data, we trained and tested in-
cremental ASR for Verbmobil-II. Results for £D are
shown in Figure 2. Smoothing slightly increases mean
FD times (from 160 ms to 218 ms after word end with
smoothness of 12), while effectively reducing edit
overhead (from 90 % of spurious dits down to 51 %).

30ther models compatible with Sphinx-4 can be used as well;
our website explains the changes necessary for English.
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Figure 2: Final Decision (FD) for words in Verbmobil-
II data, for raw iSR and two smoothing values, relative
to the words’ ends.

4 Incremental Speech Synthesis

Rounding out the toolkit is our new component for
incremental speech synthesis (detailed in [15]) based
on the non-incremental MaryTTS [16], with the fol-
lowing properties:
(a) It makes possible changes to the as-yet unspoken
part of the ongoing utterance,
(b) as well as adaptations of delivery parameters such
as speaking rate or pitch with very low latency.
(c) It autonomously makes delivery-related decisions
(such as producing hesitations), and
(d) it makes available information about delivery sta-
tus (what has been said; useful with barge-ins).
(e) And, last but not least, it runs in real time.
Figure 3 visualizes the internal data structures of the
component, showing a triangular structure where on
successive levels structure is built just-in-time (e.g.,
turning target phoneme sequences into vocoding pa-
rameters as in [17]) and hence can be changed with low
cost, if necessary. We have evaluated the component
in an application scenario [18] where it enabled highly
favoured behaviour. We have also studied in detail the
tradeoff of prosodic quality vs. timeliness of decisions
[19]. Figure 4 plots the deviation of pitch and duration
compared to non-incremental synthesis of the same
utterance versus the amount of lookahead, that is, how
far into the current phrase the next phrase becomes
known. Unsurprisingly, results are better with more
lookahead (further left in the figure, less timely be-
haviour). Slightly less than one phrase of lookahead
leads to results that are similar (close to just-noticeable
difference) to non-incremental synthesis.

5 Higher-level Components

As mentioned above, the more “higher-level” com-
ponents in our toolkit are somewhat domain-specific
(unlike the other components), and in any case are
probably exactly those modules which users of the
toolkit may want to substitute with their own.
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Figure 3: Hierarchic structure of incremental units
describing an example utterance as it is being produced
during delivery, showing the event-based just-in-time
processing strategy.
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Figure 4: Deviation of pitch and timing plotted
against lookahead. The more lookahead available,
the better the results. (The single points on the right
represent a trivial setting’s performance.)

5.1 Incremental NLU

We provide example implementations of a simple
keyword-spotting ‘NLU’, as well as of statistically
trained ones [20, 21]. A somewhat more traditional
NLU component which could be more easily ported to
other domains (by adapting lexicon and grammar) is
described in [22]. It consists of a probabilistic, beam-
search top-down parser (following [23]), which pro-
duces a principled semantic representation in the for-
malism robust minimal recursion semantics [24].

5.2 Incremental DM

An echo dialogue manager is available with INPROTK.
Incremental dialogue management [25] is in its in-
fancy, however it holds the promise of handling
sub-utterance phenomena [26] like improved turn-
taking [27].

5.3 Incremental NLG

While not part of INPROTK proper, we have recently
plugged-in an incremental NLG component based on
the SPUD microplanner [28]. Turning this component
into an IUmodule to work together with incremental
speech output was straightforward, exemplifying the
coverage and ease-of-use of INPROTK.



6 Conclusions

We have sketched the major features of our “Incremen-
tal Processing Toolkit” INPROTK. While it is far from
offering ‘plug-and-play’ ease of constructing incre-
mental dialogue systems, we hope it will prove useful
for other researchers insofar as it offers solutions to
the more low-level problems that often are not one’s
main focus, but which need solving anyways to build
incremental systems. We believe that INPROTK can be
used to explore new interactional and conversational
capabilities for spoken dialogue systems.
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