The INPROTK 2012 Release:

A Toolkit for Incremental Spoken Dialogue Processing

Timo Baumann™ and David Schlangen™

*Department of Informatics, University of Hamburg, 22527 Hamburg

**Faculty of Linguistics and Literary Studies, Bielefeld University, 33501 Bielefeld

Email: baumann@informatik.uni-hamburg.de, david.schlangen@uni-bielefeld.de
Web: http://inprotk.sf.net, http://www.inpro.tk

Abstract

We describe the 2012 release of INPROTK', our
“Incremental Processing Toolkit” which combines a
powerful and extensible architecture for incremental
processing with components for incremental speech
recognition and, new to this release, incremental
speech synthesis. These components work domain-
independently; we also provide example implemen-
tations of higher-level components such as natural
language understanding and dialogue management
that are somewhat more tied to a particular domain.
The toolkit is accompanied by evaluation tools for
analysing timing behaviour, and we highlight some
timing results on conversational speech input in this
paper. We offer our toolkit to foster research in this
new and exciting area, which promises to help increase
the naturalness of behaviours that can be modelled in
such systems.

1 Introduction

Recent work has shown that incremental (or online)
processing of user input or generation of system output
enables spoken dialogue systems to produce behaviour
that is perceived as more natural than and preferable
to that produced by systems that are bound by a turn-
based processing mode [1-4]. There is still much left
to find out about the best ways of modelling these be-
haviours in such systems, however. To foster research
in this area, we are releasing a new version of our “In-
cremental Processing Toolkit” (INPROTK), which pro-
vides lower-level components (such as speech recog-
nition and speech synthesis, but also a general modu-
lar processing architecture) and allows researchers to
concentrate on higher-level modules (such as natural
language understanding and dialogue modelling; for
which we provide example implementations). We de-
scribe these components in the following, pointing out
the differences and extensions to earlier releases [5].
Two competing incremental dialogue processing tool-
kits have been presented and compared to INPROTK
previously [6].

IThe toolkit is available as open-source at http://
inprotk.sf.net; further information on the project is avail-
able at http://www.inpro.tk.

2 Incremental Processing Architecture

INPROTK realises the /U-model of incremental pro-
cessing [7, 8], where incremental systems are con-
ceptualised as consisting of a network of processing
modules. Each module has a left buffer, a processor,
and a right buffer, where the normal mode of pro-
cessing is to take input from the left buffer, process
it, and provide output in the right buffer, from where
it goes to the next module’s left buffer. (Top-down,
expectation-based processing would work in the op-
posite direction.) As is shown in Figure 1, modules
exchange incremental units (IUs), which are the small-
est ‘chunks’ of information that can trigger connected
modules into action. IUs typically are part of larger
units; e.g., individual words as parts of an utterance,
or frame elements as part of the representation of an
utterance meaning. This relation of being part of the
same larger unit is recorded through same level links;
the units that were used in creating a given IU are
linked via grounded in links. Thus, information is
represented in the form of interconnected IUs which
form a network representing the system’s state.

Modules need to react to three basic situations:
that IUs are added to a buffer, which triggers process-
ing; that IUs that were erroneously hypothesised by
an earlier module are revoked, which may trigger a
revision of a module’s own output; and that modules
signal that they commit to an IU, that is, won’t revoke
it anymore (or, respectively, expect it to not be revoked
anymore). INPROTK offers flexibility on how tightly
or loosely modules are coupled in a system. It provides
mechanisms for sending IU updates between processes
via a light-weight remote procedure call protocol,” as
well as for using shared memory within one process
which allows each module to access the whole IU net-
work via the links. INPROTK follows an event-based
model, where modules create events that describe the
edit they performed to the IU network, for which other
modules can register as listeners. Additionally, mod-
ules can register listeners to specific IUs, e. g. to be
notified when an output IU’s delivery status changes.
Individual modules and their interconnection to form
a network are configured via a configuration file.

As opposed to our previous release [5], INPROTK

2In an earlier release, we have used the open agent architecture
[9], but in the current branch this is not further developed.

N)

103U U —— I,]

grin
\| U]

leftbuffer, | processor, rightbuffey

Q}‘tbu]‘ferB procg |rightbuffy

Figure 1: In the IU model, modules consist of a left
buffer, a right buffer, and the processor proper. They
are connected by super-imposing two buffers; IUs are
linked by grounded-in (grin and same-level links (s/I).

module communication is now completely encapsu-
lated in the TUModule class. An implementing pro-
cessor is called into action by a leftBufferUpdate
method which gives access both to the edits to IUs
in the left buffer since the last call, and to the list of
IUs directly. The implementing processor must then
notify its right buffer, either about the edits to the right
buffer, or giving the content directly. Modules can be
fully event-driven, only triggered into action by be-
ing notified of a hypothesis change, or they can run
persistently, in order to create endogenous events like
time-outs. Event-driven modules can run concurrently
in separate threads or can be called sequentially by
another module (which may seem to run counter the
spirit of incremental processing, but can be advan-
tageous for very quick computations for which the
overhead of creating threads should be avoided). In
the case of separate threads, which run at different up-
date intervals, the left-buffer view will automatically
be updated to its most recent state.

IUs are typed objects, where the base class 1U
specifies the links (same-level, grounded-in) that al-
low to create the IU network, handles update listeners,
and the assignment of unique IDs. The payload and
additional properties of an IU are specified for the
IU’s type. A design principle here is to make all rele-
vant information available, while avoiding replication.
For instance, an IU holding a bit of semantic repre-
sentation can query which interval of input data it is
based on, where this information is retrieved from
the appropriate IUs by automatically following the
grounded-in links. The lowest-level IUs are grounded
in BaseData, which contains user-side input such as
speech from the microphone, derived ASR feature
vectors, camera feeds from a webcam, derived gaze in-
formation, etc., in several streams that can be accessed
based on their timing information.

INPROTK comes with an extensive set of moni-
toring and profiling modules which can be linked into
the module network at any point and allow to stream
data to disk or to visualise it with TEDview [10]. IN-
PROTK also supports several ways of simulating input
(e. g. typed or read from a file) for debugging. All IU
modules can also output log messages to the viewing
tool directly (to ease graphic debugging of error cases
in multi-threaded applications).

3 Incremental Speech Recognition

Our speech recognition module is based on the Sphinx-
4 [11] toolkit and comes with acoustic models for Ger-
man.? The module queries the ASR’s current best
hypothesis after each frame of audio and changes its
output accordingly, adding or revoking wordIus and
notifying its listeners. Additionally, for each of the
WordIUs, SyllableIUs and SegmentIUs are cre-
ated and bound to the word (and to the syllable respec-
tively) via the grounded-in hierarchy. Later modules
in the pipeline are thus able to use this lower-level
information (e.g. to disambiguate meaning based on
prosodic aspects of words). For prosodic processing,
we inject additional processors into Sphinx’ acoustic
frontend and provide pitch, loudness, and spectral tilt
as BaseData features for further prosodic processing.

An ASR’s current best hypothesis frequently
changes during the recognition process with the ma-
jority of the changes not improving the result because
wrong words are hypothesized intermittently [12, 13].
Every such change triggers all listening modules (and
possibly their listeners), resulting in a lot of unneces-
sary processing. Furthermore, changes may actually
deteriorate results, if a ‘good’ hypothesis is intermit-
tently changed for worse. Therefore, we developed
hypothesis smoothing approaches [12] which greatly
reduce spurious edits in the output at the cost of some
timeliness.

3.1 Evaluating Incremental Speech Recognition

While not part of the distribution proper, we think that
it can only be useful for the field to agree on common
evaluation metrics. Incremental processing brings new
considerations of dynamics into the assessment of pro-
cessing quality, and hence requires additional metrics
compared to non-incremental processing. For exam-
ple, raw WER is an unsuitable metric to evaluate in-
cremental processing as it doesn’t capture the dynamic
evolution of incremental hypotheses over time.

We have refined and extended our previously out-
lined methodology and software for evaluating incre-
mental speech recognition [12, 14]. An interactive tool
now plots histograms showing when words have been
first recognized FO (respectively finally decided on
FD) relative to their position in the audio stream.

With the tool, smoothing parameters can be ex-
plored interactively to help finding the optimum for
a given corpus. To test incremental performance on
broad, conversational data, we trained and tested in-
cremental ASR for Verbmobil-II. Results for £D are
shown in Figure 2. Smoothing slightly increases mean
FD times (from 160 ms to 218 ms after word end with
smoothness of 12), while effectively reducing edit
overhead (from 90 % of spurious dits down to 51 %).

30ther models compatible with Sphinx-4 can be used as well;
our website explains the changes necessary for English.

m T T
30 - raw iSR 1 |
smoothness 8 1
smoothness 12 1
25 B
20 1’ B
o
% 15 B
10 B
1 Hh { HHHH 7
0 Wﬁﬂh Hﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬁﬂﬁﬁﬁﬁwﬁ Lo
-0.5 0 0.5 1 15 2

seconds

Figure 2: Final Decision (FD) for words in Verbmobil-
II data, for raw iSR and two smoothing values, relative
to the words’ ends.

4 Incremental Speech Synthesis

Rounding out the toolkit is our new component for
incremental speech synthesis (detailed in [15]) based
on the non-incremental MaryTTS [16], with the fol-
lowing properties:
(a) It makes possible changes to the as-yet unspoken
part of the ongoing utterance,
(b) as well as adaptations of delivery parameters such
as speaking rate or pitch with very low latency.
(c) It autonomously makes delivery-related decisions
(such as producing hesitations), and
(d) it makes available information about delivery sta-
tus (what has been said; useful with barge-ins).
(e) And, last but not least, it runs in real time.
Figure 3 visualizes the internal data structures of the
component, showing a triangular structure where on
successive levels structure is built just-in-time (e.g.,
turning target phoneme sequences into vocoding pa-
rameters as in [17]) and hence can be changed with low
cost, if necessary. We have evaluated the component
in an application scenario [18] where it enabled highly
favoured behaviour. We have also studied in detail the
tradeoff of prosodic quality vs. timeliness of decisions
[19]. Figure 4 plots the deviation of pitch and duration
compared to non-incremental synthesis of the same
utterance versus the amount of lookahead, that is, how
far into the current phrase the next phrase becomes
known. Unsurprisingly, results are better with more
lookahead (further left in the figure, less timely be-
haviour). Slightly less than one phrase of lookahead
leads to results that are similar (close to just-noticeable
difference) to non-incremental synthesis.

5 Higher-level Components

As mentioned above, the more “higher-level” com-
ponents in our toolkit are somewhat domain-specific
(unlike the other components), and in any case are
probably exactly those modules which users of the
toolkit may want to substitute with their own.

current point in time

pragmatic plan ‘

(conceptualization) say(peter(x) A open(x,?)) ‘

[syntactic plan/pattern ‘ N H \ H NP ‘
S

g words to be spoken ‘ Peter H opened H the H N ‘
2 phonemes to be uttered ‘pH i H t He o p‘anHdH 0 ‘ (53253)‘?2 placefiolder

oo P ormannng) NI« bsaress i
(motor planning) to model co-articulation

...just enough to keep

sound-card buffers full

synthesized speech audio
Fartlculatlon)

Figure 3: Hierarchic structure of incremental units
describing an example utterance as it is being produced
during delivery, showing the event-based just-in-time
processing strategy.

o

™ A

o : -4 pitch dev.

N —e— timing dev. O A----- A
—] _‘_A-‘ o

o _| AT

~ _A _____ A‘

S _G—_e/e/e—e———o

Figure 4: Deviation of pitch and timing plotted
against lookahead. The more lookahead available,
the better the results. (The single points on the right
represent a trivial setting’s performance.)

5.1 Incremental NLU

We provide example implementations of a simple
keyword-spotting ‘NLU’, as well as of statistically
trained ones [20, 21]. A somewhat more traditional
NLU component which could be more easily ported to
other domains (by adapting lexicon and grammar) is
described in [22]. It consists of a probabilistic, beam-
search top-down parser (following [23]), which pro-
duces a principled semantic representation in the for-
malism robust minimal recursion semantics [24].

5.2 Incremental DM

An echo dialogue manager is available with INPROTK.
Incremental dialogue management [25] is in its in-
fancy, however it holds the promise of handling
sub-utterance phenomena [26] like improved turn-
taking [27].

5.3 Incremental NLG

While not part of INPROTK proper, we have recently
plugged-in an incremental NLG component based on
the SPUD microplanner [28]. Turning this component
into an IUmodule to work together with incremental
speech output was straightforward, exemplifying the
coverage and ease-of-use of INPROTK.

6 Conclusions

We have sketched the major features of our “Incremen-
tal Processing Toolkit” INPROTK. While it is far from
offering ‘plug-and-play’ ease of constructing incre-
mental dialogue systems, we hope it will prove useful
for other researchers insofar as it offers solutions to
the more low-level problems that often are not one’s
main focus, but which need solving anyways to build
incremental systems. We believe that INPROTK can be
used to explore new interactional and conversational
capabilities for spoken dialogue systems.

Acknowledgments

Much of the work decribed in this paper was funded by
a grant from DFG in the Emmy Noether Programme.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

G. Aist, J. Allen, E. Campana, L. Galescu,
C. Gomez Gallo, S. Stoness, M. Swift, and M. Tanen-
haus, “Software architectures for incremental under-
standing of human speech,” in Proceedings of ICSLP,
(Pittsburgh, PA, USA), September 2006.

G. Skantze and D. Schlangen, “Incremental dialogue
processing in a micro-domain,” in Proceedings of
EACL, (Athens, Greece), pp. 745-753, March 20009.
O. Buf}, T. Baumann, and D. Schlangen, “Collaborat-
ing on utterances with a spoken dialogue system using
an isu-based approach to incremental dialogue man-
agement,” in Proceedings of SigDial, (Tokyo, Japan),
pp- 233-236, September 2010.

G. Skantze and A. Hjalmarsson, “Towards incremental
speech generation in dialogue systems,” in Procs. of
SigDial, (Tokyo, Japan), pp. 1-8, September 2010.

T. Baumann, O. Bu3, and D. Schlangen, “InproTK
in action: Open-source software for building german-
speaking incremental spoken dialogue systems,” in
Proceedings of ESSV, (Berlin, Germany), 2010.

D. Schlangen, T. Baumann, H. Buschmeier, O. Buf3,
S. Kopp, G. Skantze, and R. Yaghoubzadeh, “Mid-
dleware for incremental processing in conversational
agents,” in Procs. of SigDial, (Tokyo, Japan), 2010.
D. Schlangen and G. Skantze, “A general, abstract
model of incremental dialogue processing,” in Procs.
of EACL, (Athens, Greece), pp. 710-718, March 2009.
D. Schlangen and G. Skantze, “A general, abstract
model of incremental dialogue processing,” Dialogue
and Discourse, vol. 2, no. 1, pp. 83-111, 2011.

A. Cheyer and D. Martin, “The open agent architec-
ture,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 4, pp. 143-148, March 2001.

T. von der Malsburg, T. Baumann, and D. Schlangen,
“Telida: A package for manipulation and visualisation
of timed linguistic data,” in Proceedings of SigDial,
(London, UK), September 2009. Poster.

W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh,
E. Gouvea, P. Wolf, and J. Woelfel, “Sphinx-4: A flex-
ible open source framework for speech recognition,”
Tech. Rep. SMLI TR2004-0811, Sun Microsystems
Inc., 2004.

T. Baumann, M. Atterer, and D. Schlangen, “Assessing

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

and improving the performance of speech recognition
for incremental systems,” in Proceedings of NAACL-
HLT, (Boulder, USA), May 2009.

E. Selfridge, I. Arizmendi, P. Heeman, and J. Williams,
“Stability and accuracy in incremental speech recog-
nition,” in Proceedings of SigDial, (Portland, USA),
pp- 110-119, June 2011.

T. Baumann, O. Buf}, and D. Schlangen, “Evaluation
and optimization of incremental processors,” Dialogue
and Discourse, vol. 2, no. 1, pp. 113-141, 2011.

T. Baumann and D. Schlangen, “INPRO_iSS: A com-
ponent for just-in-time incremental speech synthesis,”
in Procs. of ACL System Demos, (Jeju, Korea), 2012.
M. Schroder and J. Trouvain, “The German text-to-
speech synthesis system MARY: A tool for research,
development and teaching,” International Journal of
Speech Technology, vol. 6, pp. 365-377, Oct. 2003.
T. Dutoit, M. Astrinaki, O. Babacan, N. d’ Alessandro,
and B. Picart, “pHTS for Max/MSP: A streaming ar-
chitecture for statistical parametric speech synthesis,”
Tech. Rep. 1, 3 2011.

H. Buschmeier, T. Baumann, B. Dorsch, S. Kopp, and
D. Schlangen, “Combining incremental language gen-
eration and incremental speech synthesis for adaptive
information presentation,” in Proceedings of SigDial,
(Seoul, Korea), 2012.

T. Baumann and D. Schlangen, “Evaluating prosodic
processing for incremental speech synthesis,” in Pro-
ceedings of Interspeech, (Portland, USA), 2012.

D. Schlangen, T. Baumann, and M. Atterer, “Incre-
mental reference resolution: The task, metrics for eval-
uation, and a bayesian filtering model that is sensitive
to disfluencies,” in Proceedings of SigDial, (London,
UK), September 2009.

S. Heintze, T. Baumann, and D. Schlangen, “Compar-
ing local and sequential models for statistical incre-
mental natural language understanding,” in Procs. of
SigDial, (Tokyo, Japan), pp. 9-16, September 2010.
A. Peldszus, O. Buf}, T. Baumann, and D. Schlangen,
“Joint satisfaction of syntactic and pragmatic con-
straints improves incremental spoken language under-
standing,” in Proceedings of EACL, (Avignon, France),
April 2012.

B. Roark, Robust Probabilistic Predictive Syntactic
Processing: Motivations, Models, and Applications.
PhD thesis, Department of Cognitive and Linguistic
Sciences, Brown University, 2001.

A. Copestake, “Robust minimal recursion semantics,
tech. rep., Cambridge Computer Lab, 2006. Unpub-
lished draft.

O. BuB} and D. Schlangen, “DIUM - an incremental
dialogue manager that can produce self-corrections,” in
Proceedings of SemDial 2011 (Los Angelogue), (Los
Angeles, USA), 2011.

O. BuB} and D. Schlangen, “Modelling sub-utterance
phenomena in spoken dialogue systems,” in Proceed-
ings of SemDial (PozDial), (Poznan, Poland), 2010.
E. Selfridge, I. Arizmendi, P. Heeman, and J. Williams,
“A temporal simulator for developing turn-taking meth-
ods for spoken dialogue systems,” in Proceedings of
SigDial, (Seoul, Korea), 2012.

M. Stone, C. Doran, B. Webber, T. Bleam, and
M. Palmer, “Microplanning with communicative inten-
tions: The SPUD system,” Computational Intelligence,
vol. 19, pp. 311-381, 2003.

bl

