
middleware for incremental processing in conversational agents
David Schlangen*, Timo Baumann*, Hendrik Buschmeier**, Okko Buß*, Stefan Kopp**, Gabriel Skantze***, Ramin Yaghoubzadeh**

* University of Potsdam, Germany | ** Bielefeld University, Germany | *** KTH, Stockholm, Sweden

Abstract We describe three implementations of
‘middleware’ layers for incremental processing in dialogue
systems, which take care of passing around and
maintaining incremental information between the system
modules. The implementations are all based on the model
proposed by (Schlangen & Skantze 2009), but differ in
certain important aspects.

The IU-Model (S&S'09) Basic notions:
• IU: Incremental Unit, minimal unit of information to be

passed around between modules of processing system.
• Module: Consists of left buffer, processor, and right buffer.
• Operations:
• add: new IUs are posted by one module for next one.

• purge / revoke: IUs that were wrongly hypothesized
are “taken back”. (E.g., “four” becomes “fourty“.)

• commit: module signals that it will not revoke IU.

InproTK Java-based implementation, but with provisions
for allowing modules programmed in other languages (via
OAA-bindings).

• event-driven left-to-right (bottom-up) processing, via
even listeners

• communicates both edit messages (updates) as well as
full buffers

• support for concurrent as well as sequential modules
• implemented in Java, integrated with Sphinx-ASR
• no information replication, access via grounded-in links,

“intelligent” IUs
• comes with selection of modules, including ASR smoo-

thing to avoid excessive hypothesis editing

Conclusions The approaches differ along certain
dimensions.
• Strength of module coupling: IPAACA couples modules

loosely, via brokering system; Jindigo enforces tight
coupling via share IU-network. InproTK has provisions
for both styles.

• Update passing, IU manipulation: IPAACA allows fully
bi-directional IU manipulation, communicates updates.
Jindigo packs updates as graph manipulations. InproTK
communicates both delta and full buffer.

We are currently exploring ways to factor out common
elements and encapsulate differences.

References & Acknowledgements
You can find the packages here:
http://purl.org/net/Middlewares-SIGdial2010
Please download and try them out!

BF acknowledges DFG (via CITEC cluster of excellence),
UP also DFG (via Emmy Noether Programme)

IU4IU1 IU2 IU3

IU4grin
sll

left buffer processor right buffer

left buffer processor right buffer

Jindigo Java-based Incremental Dialogue Framework
www.jindigo.net
• Single Java process, shared memory
• Asynchronous modules
• Standard modules and tools implemented

• Graph-based update model
• Efficient update messages
• Supports immutable IUs
• supports parallel hypotheses

IPAACA Implementation based on the ‘D-Bus’ message
bus system, which is used for remote procedure calls and
bidirectional synchronisation of IUs.

• IUs reside as objects on the D-Bus and are seen as
proxies by other modules

• Published IUs can be modified from either side;
all interested components are informed automatically

• Update notification and module administration are
handled by a dedicated ‘Relay’, where modules register

• Modules provide a list of IU categories and module
names they are interested in, thus creating loose
functional links or fixed links, respectively

• Due to the wide availability of D-Bus libraries, versions
of IPAACA are provided for C++, Python, and Java

Example Data access on the IU proxies
is transparently delegated over the
D-Bus; module A has published an IU.
B and C are registered in the corres-
ponding interest set, thus receiving a
proxy of this IU in their left buffer.
Whenever B changes the IU, A and C
receive update notifications.

A B

C

IU

IU proxy

Write access

Relay

Data access

Update notification

RBuf LBuf

Interest sets

