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 Incremental Speech Output



  

Speech Output in 
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● full utterances are generated, synthesized 
and delivered as a whole



  

Speech Output in 
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● potentially slow, as all processing is utterance-initial
 canned speech in deployed systems

{{



  

Speech Output in 
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

noisenoise

when?when?

calendar
entry

changes

user feedback

● inflexible: unable to change the ongoing utterance
 no way to react to the listener or the environment

{{



  

Potentially Better: 
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● generate, synthesize and deliver the utterance 
in smaller chunks



  

Potentially Better: 
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● less utterance-initial processing  faster onset

!!



  

Potentially Better: 
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● incremental output may take changes into account
● react and adapt to user feedback / requests / noise

when?when?

at 4:25, titled: ‘SigDial Talk’ …



  

Outline of the Talk

Goals for Incremental Speech Output

● Incremental Speech Output
 Incremental Natural Language Generation (iNLG)
 Incremental Speech Synthesis (iSS)

● Application & Results: 
 Massively Reduced System Latency
 Adaptive Information Presentation Preferred by Listeners



  

Incremental Speech Output:
Overview

● split up into two (generic) processors:
 natural language generation (iNLG)
 speech synthesis (iSS)

● implemented in the IU framework using INPROTK
 available as open-source: http://inprotk.sourceforge.net

iSSiNLG

(Schlangen and Skantze, 2009; Baumann and Schlangen, 2012)



  

Incremental Speech Output:
Overview

● starting with an utterance description
● iNLG splits the utterance in chunks and outputs 

one chunk to the buffer that is shared with iSS

iSSiNLG

utteranceIU chunkIU1

shared buffer



  

Incremental Speech Output:
Overview

● iSS processes chunk to produce phonemes

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

linguistic processing via MaryTTS (Schröder & Trouvain, 2003)



  

Incremental Speech Output:
Overview

● iSS processes chunk and 
● synthesizes just-in-time 

(only with enough look-ahead to keep all buffers full)

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

moves along with time



  

a Just-In-Time Formulation
for Incremental Speech Synthesis

utterance

chunk1

with subjectthe

overall container

structural pattern

words to be spoken

w ɪ əðphonemes to be uttered

current point in time

vocoding parameter
frames to be realized

speech audio
to be played

⊥ð

…just enough lookahead
to model co-articulation

…just enough to keep
sound-card buffers full

… filled as they
become available

ʒb tɛs ʌ kd
marks a
missing

continuation

…to be expanded
with more chunks

● triangular „top-down-left-to-right“ data structure



  

Incremental Speech Output:
Overview

● using a crawling vocoder that performs HMM 
optimization and vocoding in real-time

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

moves along with time

crawling
vocoder

(largely based on MaryTTS code; see also Dutoit et al., 2011)



  

Incremental Speech Output:
Overview

● using a crawling vocoder that performs HMM 
optimization and vocoding in real-time

● when nearing the end of the current chunk …

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

moves along with time

crawling
vocoder



  

Incremental Speech Output:
Overview

● update-messages are sent
from phonemes to chunk to iNLG

(this is a generic update mechanism in INPROTK)

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

nearing completion? trigger iNLG

on ongoing: update chunk



  

Incremental Speech Output:
Overview

● and iNLG adds another chunkIU 
before synthesis runs out of speech

● it's integrated & appended to the ongoing synthesis

● the process repeats until all chunks are synthesized

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

chunkIU2



  

Incremental Speech Output:
Summary

● two components:
 iNLG: turns ideas into words
 iSS: turns words into speech audio

● features:
 low-latency changes to upcoming chunks
 highly modular implementation of the components

● questions:
 what exactly are these chunks? 
 how can we ensure utterance cohesion?
 what's the chunks' granularity?



  

Granularity of Incremental Chunks

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available for coherent processing

● ideally: generate word-by-word
➔ highly responsive behaviour



  

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP 



  

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP 

DET: indef N: sing



  

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP 

DET: indef N: sing

a
anor: ?



  

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

● surface structure cannot always be 
produced purely left-to-right 
and word-by-word

NP 

DET: indef N: sing

a
anor: ? crocodile

alligator



  

Granularity of Incremental Chunks
for Speech Synthesis

● input units should ensure a 
coherent prosodic realization

 „This. must. be. avoided.“
 allow for some lookahead into the future

➔ our sub-utterance chunks:
 roughly correspond to intonation phrases
 coarse granularity of incremental generation
 ideal size remains an open research question



  

Incremental
Natural Language Generation

● we combine two interacting sub-components 
that share a common state

(please ask Hendrik Buschmeier for details)



  

Micro-Content Planning (MCP)

● turns utterance outline into
 set of desired updates on listener's information state
 presuppositions and private knowledge

● generates incremental 
micro-planning tasks 
(IMPTs, one at a time)



  

Micro-Planning Proper (MPP)

● takes one IMPT
● uses SPUD to generate surface form
● adds generated communicative intent 

to common statecommon state between 
MCP and MPP

 taken into account for 
generation of next IMPT

 for coherence & adherence
to pragmatic principles

our implementation uses JavaSPUD (DeVault, 2008)



  

Combining Incremental Language Generation
and Incremental Speech Synthesis

for Adaptive Information Presentation

✓

✓



  

Example Application: 
Reading out Calendar Events

● part of a virtual human systems project
● relatively long utterances:

 example: play ReferenceExample1.aiff
„your appointment on Wednesday, 4. April, 10 am to 
12 pm, titled Lecture Linguistics has been rescheduled 
to Friday, 6. April, 12 pm to 2 pm.“

● 6-7 chunks of information



  

Advantage of iNLG+iSS: 
Processing Time

● system response time (i.e. processing until audio 
onset) is crucial in an interactive environment

● a non-incremental system must perform all 
processing utterance-initially

● an incremental system can fold most 
processing time into delivery time



  

Results for Utterance Onset Timing

● iNLG and iSS can start output much faster 
than non-incremental processing

● (linguistic pre-processing is not yet incrementalized)

averaged over 9 stimuli, time in milliseconds

processing step non-incr. incremental
NLG 361  52  

Synth. (ling. processing) 217  222  
Synth. (HMM & vocoding) 1004  21  

Total 1582  295  



  

Evaluation of Adaptive Behaviour

● lowest hanging fruit: deal with intermittent noise 
(e.g. to be able to use this next to a busy street)

 at random intervals, noise is played 
● simple behaviours to cope with noise: 

 ignore the noise, continue speaking (baseline A)
 stop audio, continue after end of noise (baseline B)

● example: play {A,B}5.aiff



  

Adaptation Strategies

1.„high-level“: repetition (of selected chunks)

2.prosodic adaptation to noise

3.incremental NLG allows for dynamic, adapted 
creation of later sub-utterance chunks

 adaptation to state happens in both MCP and MPP:
● MPP

 influence generation 
parameters, such as 
verbosity, redundancy

● MCP
 which IMPT next?
 repair/comment?



  

Application: Adaptive Behaviour

● simple behaviours to cope with noise: 
 ignore the noise, continue speaking (baseline A)
 stop audio, continue after end of noise (baseline B)

● adaptive behaviour:
 stop delivery at the end of current word, 
 restart adapted phrase after noise (iNLG+iSS)

● example: play C5.aiff



  

User Study

● 9 stimuli × 3 conditions (A, B, iNLG+iSS)
● Q: „I found the behaviour of the system in this 

situation as I would expect it from a human speaker“
● 12 subjects, 7-point Likert scale

➔ highly significant preference for incremental system
➔ no difference between settings A and B

➔ stopping audio did not improve user ratings !!



  

Conclusion

● we present a method for incremental NLG
● we present a system for incremental speech synthesis

 just-in-time, low-latency, low overhead for changes
 general purpose, open-source

● show performance in interactive environment
 radically reduced system onset time
 adaptation to intermittent noise
 highly preferred by human listeners 



  

Future Work

● research question: ideal granularity for NLG and iSS
● further develop mid-level incremental structure & 

processing for improved prosody production
 also incrementalize the HMM state selection 

(which currently uses decision tree features that 
look into the future – however, is this necessary?)

● extend system to handle intra-utterance user 
feedback, interruptions, …



  

Thank you ! 
Questions and Comments ? 

Thank you very much for your attention.



  

Prosodic Quality of 
Incremental Speech Synthesis

your flight  | on September 8th 2012 | to PDX via EWR | …

when?
(lookahead)

chunk1 chunk2 chunk3

w1w0 wnwn-1



  

Advantages of iSS:
Computational Costs

say(peter(x) ∧ gate(y) ∧ open(x,y))

N NPV

Peter theopened gate

p əɐiː poʊ̯ ð tn d ə g ɛɪ̯t

large set of linear equations

symbolic processing  cheap→

lots of signal processing

20 %

40 %
40 %

rough estimates 
for MaryTTS



  

Speech Synthesis is fast, 
why not re-do it repeatedly?

● it may be fast on the server, 
but it's still slow on your phone

 repeating drains the battery more than necessary
● you need a notion of how to align the old and the 

new synthesis – that's at least as difficult as what 
we're doing



  

Adaptation Used in the System

● Re-synthesis in new context results in utterance-
initial prosody 

● Details on NLG adaptation in the paper
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