

SIGDial 2012

Combining Incremental Language Generation
and Incremental Speech Synthesis

for Adaptive Information Presentation

Hendrik Buschmeier*, Timo Baumann**,
Benjamin Dorsch*, Stefan Kopp*, David Schlangen*

*U Bielefeld, **U Hamburg, Germany

Combining Incremental Language Generation
and Incremental Speech Synthesis

for Adaptive Information Presentation

 Incremental Speech Output

Speech Output in
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● full utterances are generated, synthesized
and delivered as a whole

Speech Output in
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● potentially slow, as all processing is utterance-initial
 canned speech in deployed systems

{{

Speech Output in
Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

noisenoise

when?when?

calendar
entry

changes

user feedback

● inflexible: unable to change the ongoing utterance
 no way to react to the listener or the environment

{{

Potentially Better:
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● generate, synthesize and deliver the utterance
in smaller chunks

Potentially Better:
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● less utterance-initial processing  faster onset

!!

Potentially Better:
Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: ‘SigDial Talk’ with the note: ‘be on time’.

● incremental output may take changes into account
● react and adapt to user feedback / requests / noise

when?when?

at 4:25, titled: ‘SigDial Talk’ …

Outline of the Talk

Goals for Incremental Speech Output

● Incremental Speech Output
 Incremental Natural Language Generation (iNLG)
 Incremental Speech Synthesis (iSS)

● Application & Results:
 Massively Reduced System Latency
 Adaptive Information Presentation Preferred by Listeners

Incremental Speech Output:
Overview

● split up into two (generic) processors:
 natural language generation (iNLG)
 speech synthesis (iSS)

● implemented in the IU framework using INPROTK
 available as open-source: http://inprotk.sourceforge.net

iSSiNLG

(Schlangen and Skantze, 2009; Baumann and Schlangen, 2012)

Incremental Speech Output:
Overview

● starting with an utterance description
● iNLG splits the utterance in chunks and outputs

one chunk to the buffer that is shared with iSS

iSSiNLG

utteranceIU chunkIU1

shared buffer

Incremental Speech Output:
Overview

● iSS processes chunk to produce phonemes

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

linguistic processing via MaryTTS (Schröder & Trouvain, 2003)

Incremental Speech Output:
Overview

● iSS processes chunk and
● synthesizes just-in-time

(only with enough look-ahead to keep all buffers full)

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

moves along with time

a Just-In-Time Formulation
for Incremental Speech Synthesis

utterance

chunk1

with subjectthe

overall container

structural pattern

words to be spoken

w ɪ əðphonemes to be uttered

current point in time

vocoding parameter
frames to be realized

speech audio
to be played

⊥ð

…just enough lookahead
to model co-articulation

…just enough to keep
sound-card buffers full

… filled as they
become available

ʒb tɛs ʌ kd
marks a
missing

continuation

…to be expanded
with more chunks

● triangular „top-down-left-to-right“ data structure

Incremental Speech Output:
Overview

● using a crawling vocoder that performs HMM
optimization and vocoding in real-time

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

moves along with time

crawling
vocoder

(largely based on MaryTTS code; see also Dutoit et al., 2011)

Incremental Speech Output:
Overview

● using a crawling vocoder that performs HMM
optimization and vocoding in real-time

● when nearing the end of the current chunk …

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

moves along with time

crawling
vocoder

Incremental Speech Output:
Overview

● update-messages are sent
from phonemes to chunk to iNLG

(this is a generic update mechanism in INPROTK)

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

nearing completion? trigger iNLG

on ongoing: update chunk

Incremental Speech Output:
Overview

● and iNLG adds another chunkIU
before synthesis runs out of speech

● it's integrated & appended to the ongoing synthesis

● the process repeats until all chunks are synthesized

iSSiNLG

utteranceIU chunkIU1 with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocoder

chunkIU2

Incremental Speech Output:
Summary

● two components:
 iNLG: turns ideas into words
 iSS: turns words into speech audio

● features:
 low-latency changes to upcoming chunks
 highly modular implementation of the components

● questions:
 what exactly are these chunks?
 how can we ensure utterance cohesion?
 what's the chunks' granularity?

Granularity of Incremental Chunks

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available for coherent processing

● ideally: generate word-by-word
➔ highly responsive behaviour

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP

DET: indef N: sing

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

NP

DET: indef N: sing

a
anor: ?

Granularity of Incremental Chunks
for Language Generation

● granularity ≙ size of the units
 determines responsiveness to changes
 determines context available

● ideally: generate word-by-word
 however, this may be infeasible

● surface structure cannot always be
produced purely left-to-right
and word-by-word

NP

DET: indef N: sing

a
anor: ? crocodile

alligator

Granularity of Incremental Chunks
for Speech Synthesis

● input units should ensure a
coherent prosodic realization

 „This. must. be. avoided.“
 allow for some lookahead into the future

➔ our sub-utterance chunks:
 roughly correspond to intonation phrases
 coarse granularity of incremental generation
 ideal size remains an open research question

Incremental
Natural Language Generation

● we combine two interacting sub-components
that share a common state

(please ask Hendrik Buschmeier for details)

Micro-Content Planning (MCP)

● turns utterance outline into
 set of desired updates on listener's information state
 presuppositions and private knowledge

● generates incremental
micro-planning tasks
(IMPTs, one at a time)

Micro-Planning Proper (MPP)

● takes one IMPT
● uses SPUD to generate surface form
● adds generated communicative intent

to common statecommon state between
MCP and MPP

 taken into account for
generation of next IMPT

 for coherence & adherence
to pragmatic principles

our implementation uses JavaSPUD (DeVault, 2008)

Combining Incremental Language Generation
and Incremental Speech Synthesis

for Adaptive Information Presentation

✓

✓

Example Application:
Reading out Calendar Events

● part of a virtual human systems project
● relatively long utterances:

 example: play ReferenceExample1.aiff
„your appointment on Wednesday, 4. April, 10 am to
12 pm, titled Lecture Linguistics has been rescheduled
to Friday, 6. April, 12 pm to 2 pm.“

● 6-7 chunks of information

Advantage of iNLG+iSS:
Processing Time

● system response time (i.e. processing until audio
onset) is crucial in an interactive environment

● a non-incremental system must perform all
processing utterance-initially

● an incremental system can fold most
processing time into delivery time

Results for Utterance Onset Timing

● iNLG and iSS can start output much faster
than non-incremental processing

● (linguistic pre-processing is not yet incrementalized)

averaged over 9 stimuli, time in milliseconds

processing step non-incr. incremental
NLG 361 52

Synth. (ling. processing) 217 222
Synth. (HMM & vocoding) 1004 21

Total 1582 295

Evaluation of Adaptive Behaviour

● lowest hanging fruit: deal with intermittent noise
(e.g. to be able to use this next to a busy street)

 at random intervals, noise is played
● simple behaviours to cope with noise:

 ignore the noise, continue speaking (baseline A)
 stop audio, continue after end of noise (baseline B)

● example: play {A,B}5.aiff

Adaptation Strategies

1.„high-level“: repetition (of selected chunks)

2.prosodic adaptation to noise

3.incremental NLG allows for dynamic, adapted
creation of later sub-utterance chunks

 adaptation to state happens in both MCP and MPP:
● MPP

 influence generation
parameters, such as
verbosity, redundancy

● MCP
 which IMPT next?
 repair/comment?

Application: Adaptive Behaviour

● simple behaviours to cope with noise:
 ignore the noise, continue speaking (baseline A)
 stop audio, continue after end of noise (baseline B)

● adaptive behaviour:
 stop delivery at the end of current word,
 restart adapted phrase after noise (iNLG+iSS)

● example: play C5.aiff

User Study

● 9 stimuli × 3 conditions (A, B, iNLG+iSS)
● Q: „I found the behaviour of the system in this

situation as I would expect it from a human speaker“
● 12 subjects, 7-point Likert scale

➔ highly significant preference for incremental system
➔ no difference between settings A and B

➔ stopping audio did not improve user ratings !!

Conclusion

● we present a method for incremental NLG
● we present a system for incremental speech synthesis

 just-in-time, low-latency, low overhead for changes
 general purpose, open-source

● show performance in interactive environment
 radically reduced system onset time
 adaptation to intermittent noise
 highly preferred by human listeners

Future Work

● research question: ideal granularity for NLG and iSS
● further develop mid-level incremental structure &

processing for improved prosody production
 also incrementalize the HMM state selection

(which currently uses decision tree features that
look into the future – however, is this necessary?)

● extend system to handle intra-utterance user
feedback, interruptions, …

Thank you ! 
Questions and Comments ? 

Thank you very much for your attention.

Prosodic Quality of
Incremental Speech Synthesis

your flight | on September 8th 2012 | to PDX via EWR | …

when?
(lookahead)

chunk1 chunk2 chunk3

w1w0 wnwn-1

Advantages of iSS:
Computational Costs

say(peter(x) ∧ gate(y) ∧ open(x,y))

N NPV

Peter theopened gate

p əɐiː poʊ̯ ð tn d ə g ɛɪ̯t

large set of linear equations

symbolic processing cheap→

lots of signal processing

20 %

40 %
40 %

rough estimates
for MaryTTS

Speech Synthesis is fast,
why not re-do it repeatedly?

● it may be fast on the server,
but it's still slow on your phone

 repeating drains the battery more than necessary
● you need a notion of how to align the old and the

new synthesis – that's at least as difficult as what
we're doing

Adaptation Used in the System

● Re-synthesis in new context results in utterance-
initial prosody

● Details on NLG adaptation in the paper

	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44

